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tradeoffs is required, or (c) the dispatcher has qualitative information regarding the rela-
tive importance of hard time-window constraints across customers. This paper proposes
a new iterative route construction and improvement algorithm to solve vehicle routing
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algorithms tion quality and computational time of the new algorithm has been compared against
existing results on benchmark problems. The presented algorithm has improved thirty
benchmark problem solutions for the vehicle routing problems with soft time windows.
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1. Introduction

The vehicle routing problem with hard time windows (VRPHTW) has a significant body of literature. Clearly, the VRPHTW
is a problem with practical applications in distribution and logistics due to the rising importance of just-in-time (JIT) pro-
duction systems and the increasingly tight coordination of supply chain operations. In comparison, the vehicle routing prob-
lem with soft time windows (VRPSTW) has received meager attention. The VRPSTW is a relaxation of the VRPHTW,; in the
former, time windows can be violated if a penalty is paid; in the latter violations are infeasible.

The VRPSTW also has many practical applications (Chiang and Russell, 2004): (1) relaxing time windows can result in
lower total costs without hurting customer satisfaction significantly, (2) many applications do not require hard time win-
dows - e.g. the delivery of fuel/gas to service stations, (3) travel times cannot be accurately known in many practical appli-
cations, and (4) VRPSTW approaches can be used to solve VPRHTW if the penalties are modified appropriately. In addition,
VRPSTW solutions provide a workable alternative plan of action when the problem with hard time windows is infeasible.

The objective of this paper is to develop a flexible algorithm that can be applied to solve VRPSTW instances. It is useful for
dispatchers to have these different solutions when: (a) the number of routes needed for the hard time window (HTW) prob-
lem case exceeds the number of available vehicles, (b) a study of cost-service tradeoffs is required, and (c) the dispatcher has
qualitative information regarding the relative importance of service level across customers. For example, in many practical
situations late deliveries have penalties that significantly exceed the penalties for early delivery. Besides, customers may be
incapable or unwilling to set precise time windows in advance and simply prefer the flexibility to alter their pickup or
delivery requests (Powell et al., 2002).
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This paper provides a fast and high quality solution approach that solves soft time window (STW) problems and that can
also be easily adopted to solve hard time window problems using the STW solution as a lower bound. The rest of this paper is
organized into five additional sections. Section 2 reviews the relevant literature on VRPSTW problems. Section 3 introduces
the mathematical notation and describes the new iterative route construction and improvement (IRCI) algorithm. Section 4
compares IRCI computation time and solution quality against available benchmarked solutions. Section 5 discusses IRCI algo-
rithmical properties. Section 6 ends with conclusions.

2. Literature review

Heuristics to solve the VRP with time windows can be classified (in increasing order of solution quality) as construction
heuristics, local search heuristics, and metaheuristics. Metaheuristics generally produce solutions of higher quality but this
is usually at the expense of significantly longer computation times. There is a clear tradeoff between computation time
and solution quality.

Route construction algorithms work by inserting customers one at a time into partial routes until a feasible solution is
obtained. Construction heuristics include the work of Solomon (1987), Potvin and Rousseau (1993), and loannou et al.
(2001).

Local search methods improve on feasible solutions performing exchanges within a neighborhood while maintaining the
feasibility of the solutions. Some of the most successful local improvement methods include the algorithms proposed by Rus-
sell (1995), Caseau and Laburthe (1999), Cordone and Calvo (2001), Braysy (2002), and Ibaraki et al. (2005). The method pro-
posed by Cordone and Calvo (2001) is a relatively simple deterministic heuristic based on the iterative application of k-opt
exchanges combined with an insertion (or simple ejection chain) procedure to reduce the number of routes. The IRCI is also
based on an iterative application of algorithms, i.e. route construction and improvement algorithms. However, the IRCI is not
a local search method but a route based method as detailed in Section 3.

Metaheuristics include a diverse set of methods such as simulated annealing, genetic algorithms, tabu search, ant-colony,
and constraint programming. Some of the most successful metaheuristics include the algorithms proposed by Taillard et al.
(1997), Liu and Shen (1999), Homberger and Gehring (1999), Berger et al. (2003), and Braysy (2003). Recent publications
include the work of Hashimoto and Yagiura (2008) that proposed a path relinking approach with an adaptive mechanism
to control parameters where the generated solutions in the path relinking are improved by a local search. Hsu et al.
(2007) proposed an algorithm tailored to the problem of perishable food distribution. For additional references and a review
of the large body of VRPHTW research the reader is referred to a recent comprehensive survey by Braysy and Gendreau
(2005a,b).

The body of work related to the VRPSTW is relatively scant. Early work on the topic includes the work of Sexton and Choi
(1986) using Benders decomposition to solve a single-vehicle pickup and delivery routing problem. Ferland and Fortin
(1989) solves a variation of the VRPSTW where customers’ time windows are adjusted to lower service costs. Koskosidis
et al. (1992) proposes a generalized assignment problem of customers to vehicles and a series of traveling salesman prob-
lems with soft time windows constraints.

Balakrishnan (1993) proposes construction heuristics for the VRPSTW based on the nearest neighbor, Clarke and Wright
savings, and space-time rules algorithms. The heuristics are tested on a subset of the Solomon set problems for hard time
windows using linear penalty functions. Taillard et al. (1997) propose a tabu search heuristic to solve a VRPSTW as proposed
by Balakrishnan, i.e. with linear penalty functions. The tabu search algorithm produced very good results on the Solomon set
with hard time windows; however, no results are reported for the VRPSTW.

Ioannou et al. (2003) solves Solomon problems and extended Solomon problems of up to 400 customers with a nearest
neighbor that generates and modifies customer time windows to find lower cost solutions; no computation times are re-
ported. Chiang and Russell (2004) uses a tabu search approach with a mixed neighborhood structure and advance recovery
to find some of the best solutions ever reported for Solomon VRPSTW instances. The algorithm designed by Ibaraki et al.
(2005) is another metaheuristic that could handle soft time-window constraints and penalties using a local search based
on a cyclic-exchange neighborhood to assign and sequence customers; only results for instances with hard time windows
are reported. Calvete et al. (2007) propose a goal programming approach to the vehicle routing and solve medium size prob-
lems (less than 70 customers) with soft and hard time windows, a heterogeneous fleet of vehicles, and multiple objectives.
Hashimoto et al. (2006) proposes an algorithm for flexible time windows (hard and soft) and travel times using local search;
soft time window and soft traveling time constraints are treated as part of the objective function and the authors deal with a
generalized VRP. Fu et al. (2008) adapted a tabu search algorithm, previously used in the open vehicle routing problem (Fu
et al., 2005), for the VRPSTW.

It is assumed in the literature that fixed costs associated with each additional route (vehicle) outweigh travel time or dis-
tance related costs, i.e. a multi-objective hierarchical approach to evaluate solutions. For VRPSTW problems, it is assumed
that the primary objective is the minimization of vehicles, the secondary objective is the minimization of the number of soft
time windows used, and the tertiary objective is the minimization of distance travel. Although this rigid hierarchy facilitates
benchmarking, in real-world situations it is possible that only a subset of customers may allow soft time windows. Hence,
practical problems may consist of a mix of hard and soft time windows. It is valuable that solution approaches can deal with
both types of time windows.
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As indicated by Braysy and Gendreau (2005a,b), fair and meaningful comparisons of vehicle routing heuristics require
standard benchmark problems, common objective functions, and the full reporting of: (a) solution quality, (b) number of
runs needed and computation time per run, and (c) computing power or processor speed. To the best of the author’s knowl-
edge, the only three journal publications that include results for VRPSTW benchmark problems and comply with prerequi-
sites (a)-(c) are: Balakrishnan (1993), Chiang and Russell (2004), and Fu et al. (2008). Section 4 compares IRCI results with
previous results found in the VRPSTW literature in terms of solution quality and computational time.

3. Problem definition and solution algorithm

This section begins with an introduction of a precise mathematical definition of the problems studied in this research. The
remainder of this section describes the solution algorithm.

3.1. Problem definition

The vehicle routing problem with hard time windows (VRPHTW) studied in this research can be described as follows: Let
G = (V, A) be a graph, where V = (vy,...,vy) isavertexsetand A = {(v;, v;) :i#j A, j€ V}isanarc set. Vertex 7, denotes
a depot at which the routes of m identical vehicles of capacity gmax start and end. The set of vertices C={v, ..., v,) specify
the location of a set of n customers. Each vertex in V has an associated demand g; > 0, a service time s; > 0, and a service
time window [e;, [;]. Each arc (;, ;) has an associated constant distance d; > 0 and travel time t; > 0. The arrival time of a
vehicle at customer i, i € C is denoted a; and its departure time b;; the beginning of service time is denoted y;. The primary
objective function for the VRPHTW is the minimization of the number of routes. A secondary objective is the minimization of
total time or distance. The solution to the VRPHTW must satisfy the following:

(a) The value of m is not specified initially; it is an output of the solution algorithm.
(b) A route cannot start before eq and cannot end after ;.

(c) Service to customer i cannot start before e; and cannot start after [;.

(d) Every route starts and ends at the depot 7.

(e) Every customer is visited exactly once by one vehicle.

(f) The total demand of any vehicle route does not exceed the vehicle capacity.

The VRPSTW is a relaxation of the VRPHTW. With soft time windows, there is an allowable violation of time windows
denoted P« > 0. The time window of each customer i, i € C can be enlarged to [6; — Pmax, li + Pmax] = [e?, l,-#}. In addition,
an early penalty p,(e; — y;) is applied if service time starts early, i.e. y; € [e/, e;]. Similarly, a late penalty p,(y; — ) is applied if
service starts late, i.e. y; € [I;, l,#}. The primary objective function for the VRPSTW is the minimization of the number of routes.
A secondary objective is the minimization of the number of time window violations. A third objective is the minimization of
total time or distance plus penalties for early or late deliveries. It is important to notice that the depot time windows as well
as the maximum route duration are not changed as a result of the customers’ time window relaxation.

3.2. Solution algorithms

At its core the IRCI algorithm is a construction algorithm were routes are sequentially built and improved. The solution
method is divided into two phases: route construction and route improvement. Unlike local search heuristics, where cus-
tomers or groups of customers are exchanged and inserted, the IRCI improves the solution of VRP problems creating and
improving groups or sets of routes.

The route construction phase utilizes two algorithms: (a) an auxiliary route building algorithm and (b) a route construc-
tion algorithm. The route improvement phase also utilizes two algorithms: (c) a route improvement algorithm and (d) a ser-
vice time improvement algorithm.

Using a bottom up approach the algorithms are introduced in the following order: (a) the auxiliary algorithm, (b) the con-
struction algorithm, (c) the route improvement algorithm, and (d) the start time improvement algorithm.

3.2.1. The auxiliary algorithm

The auxiliary routing algorithm H; can be any heuristic that is given a starting vertex, a set of customers, and a depot loca-
tion that returns a set of routes that satisfy the constraints of the VRPHTW or VRPSTW.

In this research H; is a generalized nearest neighbor heuristics (GNNH). The GNNH has four inputs: (a) the weights or
parameters for “generalized cost” function denoted by 4 = {do, d1, ..., d;}, (b) an initial vertex denoted by v, (c) a set of cus-
tomers to route denoted by C, and (d) a depot location denoted by 7. The GNNH starts every route by finding the unrouted
customer with the least appending “generalized cost”. At every subsequent iteration, the heuristics searches for the remain-
ing unrouted customer with the least appending cost.

The “generalized cost” function used in this research accounts for geographical and temporal closeness among customers,
the remaining capacity in the vehicle, and the cost of adding a new vehicle if the next customer is infeasible. Let i denote the
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initial vertex and let j denote the customer to append next. Let g; denote the remaining capacity of the vehicle after serving
customer i. The service at a customer i, i € V begins at time y; = max(a;, €;). The generalized cost of going from customer i to
customer j is estimated as:

g(4,1,j) = o1dij + 62(a; — (a; +57)) + 93 (l; — (@i + i + ty)) + 0a(q; — d;)

The parameter §; takes into account the weight of the intercustomer distance. The parameter &, takes into account the
“slack” between the completion of service at i and the earliest feasible beginning of service at j, i.e. aj = max(y; + s; + t;;, ;).
Following Solomon’s approach (1987), the parameter J5 takes into account the “urgency” of serving customer j expressed
as the time remaining until the vehicle’s last possible start. The parameter J,4 is introduced in this research and takes into
account the capacity slack of the vehicle after serving customer j.

If customer j is infeasible, i.e. it cannot be visited after serving customer i, the cost of ending customer i’s route and start-
ing a new one to serve customer j is estimated as:

8(4,1,j) = 6o + 61doj + 620 + I3 (l; — toj) + 0a(qmax — dj)

The parameter J is the cost of adding a new vehicle. The same GNNH can be applied to VRPSTW with the addition of two
terms. For feasible customers:

g(4,1,) = 01dy + 62(a; — (@i + 51)) + 03(lj — (@i + Si + ) + Ja(q; — dj) + +3s[ej — @] " + Je[a; — ]

The parameters 55 and Jg are added to account for possible early or late service penalties, respectively; for infeasible cus-
tomers J, is added. With soft time windows, the service at a customer i, i € V begins at time y; = max(a;, e/’). For problems
with general time windows, i.e. two or more time window intervals, the generalized cost is calculated for each time interval
and the least expensive interval provides the generalized cost for that particular customer.

The auxiliary route heuristic is defined as H; (4, v;, C, vo) where 4 = {6¢, 41, ..., d¢} are the parameters of the generalized
cost function, 7; is the vertex where the first route starts, C is the set of customers to route, and 7, the depot where all routes
end and start, with the exception of the first route that starts at ;. In all cases, the deltas are positive weights that satisfy:
S1+dh+d03=1land g =0ie {0,1,...,6}.

3.2.2. The route construction algorithm

In this algorithm, denoted H,, routes are constructed sequentially. Given a partial solution and a set of unrouted custom-
ers, the algorithm uses the auxiliary heuristic H; to search for the feasible least cost set of routes. The algorithm also uses an
auxiliary function w(z;, C, g, W) that given a set of unrouted customers C, a vertex v; ¢ C, and a generalized cost function
g(4, v, v;) returns a set of vertexes with the lowest generalized costs g(4, v;, v;) for all v; € C.

Route construction algorithm

Functions or algorithms

H;: route building heuristic

w(v;, C, g, W): returns set of vertexes with the lowest generalized costs
c(R) = function that returns the cost of a route R

Data

C: set of customers to route (not including the depot )

LLimit = initial number of routes or best known lower bound

W: width of the search, number of solutions to be built and compared before adding a customer to a route
A: space of the route heuristic generalized cost function parameters

START H.

start — v

start «— g

bestSequence «+ v

# vehicles «+— min#veh « lowestCost « oo

Ccopy «+ C

for each 4 € A

while C # @5 AND LLimit < #vehicles AND #vehicles < min#veh do

W «— min (W, |C])
C — w(start, C, g, W)

CooONOUThA WN =

10 for each v, e C

11 if c(bestSequence U v;) + c(H; (4, v, C, 1p)) < lowestCost then
12 lowestCost — c(bestSequence U v;) + c(H (4, v;, C, vp))
13 lowestNext «— v;

14 end if

15 end for

16 start — lowestNext
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17 C « C)\ lowestNext

18 bestSequence «— bestSequence U lowestNext

19 R «— bestSequence UH; (4, lowestNext, C, v)
20 #vehicles — cardinality of the set of routes R
21 end while

22 C — Ccopy

23 if min#tveh > #wvehicles

24 min#veh — +uvehicles

25 end if

26 end for

Output
Best set of routes R that serve all C customers
END H.

The conditions in the while-loop that starts in line 7 reduce the number of unnecessary computations after a lower bound
have been reached or when a particular instance of the cost parameters 4 € A are producing a solution with a larger number
of routes. The generalized cost function g that is used in H; must not be confused with the objective cost function c that is
used in H, or the improvement heuristic H;; the latter cost function is the sum of the accrued vehicle, distance, time, or pen-
alty costs as indicated in the objective function.

The running time is significantly improved if H; is used to complete the current route with as many customers as possible
and with the minimum distance cost, i.e. H; returns a partial solution instead of a solution that routes all customers. Then, in
line (11) of the H, algorithm the best solution is the one that inserts the most costumers in the current route where ; be-
longs; in case of ties they are broken by the distance of the partial solutions.

3.2.3. The route improvement algorithm

After the construction is finished, routing costs can be reduced using a route improvement algorithm. The improvement
algorithm works on a subset of routes S. In this algorithm two functions are introduced. The function k, (1, S, p) returns a set
of p routes that belong to S and are located in the proximity of route r;. In this research, the distance between routes’ centers
of gravity was used as a measure of geographic proximity. By definition, the distance of route r; to itself is zero. Hence, the
route r; is always included in the output of the set function k(r; S, p).

The function ks (R, s) orders the set of routes R from smallest to largest based on a criteria such as the number of custom-
ers per route, route distance, or route duration and then returns a set of s > 1 routes with the least number of customers; e.g.
ks(R, 1) will return the route with the least number of customers if this is the chosen criteria. The intuition is that routes with
a small number of customers, distance traveled, duration, or volume utilization have a considerable “capacity slack” and can
therefore be improved significantly. These four basic measures of capacity slack and their combinations are used to select
subsets of routes in the improvement phase of IRCI. If two or more routes are tied in a given criteria, ties are solved drawing
random numbers or by looking at a secondary criteria. To simplify notation the term C(S) is the set of customers served by
the set of routes S.

Route construction algorithm

Functions or algorithms
H.: route building heuristic
ks and k,: route selection functions

Data

W: number of solutions to be built and compared in the construction heuristic
A: generalized cost parameters of the auxiliary route heuristic

s: number of routes potentially considered for improvement

p: number of neighboring routes to r; that are reconstructed

R: set of routes

LLimit = lowest number of vehicles or stop condition for the H, heuristic

START H;
s <« min(s,|R| - 1)
p < min(s,p)
S — ks(R,s)CR
S« R\S
while |S| > 1 do
r* «— ks(S,1)
G — kp(r*,S,p)
G — H.H;, W, 4,s,p,C(G),LLimit)

O N WN =
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9  if c(G)<c(G) then
10 R — R\G

11 R « RUG
12 S — S\G
13 S — Sud
14 end if
15 s — S|
16 r=ks(S,S)
17 S=S\r
18  if |S| > O then
19 r=ks(S,1)
20 S — Sur
21 S — S/
22 s « min(s,|S])
23 p <« min(s,p)
24 end if
25 end while
Output
R set of improved routes
END H;

3.2.4. Start time improvement algorithm

With soft time windows, to reduce the number of roads during the construction and improvement algorithms, the service
at a customer i, i € V begins at time y; = max(a;, e}). However, once the algorithm H; finishes, the sequence of customers
per route is defined and some early time windows may be unnecessary.

This algorithm eliminates unnecessary usage of early time windows. The algorithm operates backwards, starting from the
last customer. The algorithm verifies if a service time y; < e; can be moved to y; = e; without violating the following customer
time window. Assuming that customer j follows customer i, then the service time can be moved later if two conditions are
met: (1) e; + s; + dy < Ij if customer j is not using a soft time windows or (2) e; +s; + djj < l}% if customer j is using a late soft
time window. In the former case, the service time for customer i is set to y; = min(l; — (s; + dj), I;); in the latter case, the
service time for customer i is set to y; = min(l]# — (si +dy), ).

This next section compares the IRCI against other solution approaches using standard benchmark problems for the
VRPSTW.

4. Computational results

As seen in the previous section, at its core the IRCI algorithm is a construction algorithm where routes are sequentially
built and improved. This section compares the results of the IRCI algorithm against other solution methods that report solu-
tion quality and computation time on benchmark problems for the VRPSTW. These benchmark problems are variations of the
well known Solomon benchmark problems for the VRPHTW.

The 56 Solomon benchmark problems for the VRPHTW are based on six groups of problem instances with 100 customers.
The six problem classes are named C1, C2, R1, R2, RC1, and RC2. Customer locations were randomly generated (problem sets
R1 and R2), clustered (problem sets C1 and C2), or mixed with randomly generated and clustered customers (problem sets
RC1 and RC2). Problem sets R1, C1, and RC1 have a shorter scheduling horizon, tighter time windows, and fewer customers
per route than problem sets R2, C2, and RC2, respectively.

The first set of benchmark problems was originally proposed by Balakrishnan (1993). Balakrishnan (1993), Chiang and
Russell (2004), Fu et al. (2008) are the only references with time and cost results for this set of VRPSTW problems. Balakrish-
nan (1993) worked on a subset of Solomon problems setting a P,,.x that can be either 10%, 5%, or 0% of the total route dura-
tion (lp — ep). Balakrishnan (1993), Chiang and Russell (2004), and Fu et al. (2008) also set a maximum vehicle waiting time
limit Wy,ax. The maximum waiting time limits the amount of time that a vehicle can wait at a customer location before start-
ing service, i.e. a vehicle can arrive to customer i only after (e; — Pmax — Whax) and waiting at a customer after service is not
allowed. Since the VRPSTW is a relaxation of the VRPHTW, a new constraint that limits the maximum waiting time is clearly
opposed to the spirit of the VRPSTW. Further, a maximum waiting time constraint Wy,.x is completely unrelated to time-
window constraints.! Despite these shortfalls, a Wy,.x = 10% constraint is added, mainly to facilitate comparisons on a level
playing field.

1 Further, if there are carrier’s costs associated with waiting time, e.g. parking, these costs can be incorporated into the routing cost function c rather than
imposing a hard time waiting constraint.
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The solution results presented by Balakrishnan (1993) are denoted BAL. The solution results presented by Chiang and Rus-
sell (2004) which use two solution methods, tabu search (TB) and advance recovery (AR), are denoted by the initials TB and
AR respectively. The solution results presented by Fu et al. (2008) using the unified tabu search method are denoted (UTS).
This paper presents two solutions that utilize the same IRCI algorithms and different running times. These solutions are la-
beled “IRCIs” and “IRCIe”, the final letter of each label stands for “short” and “extended” computational times respectively.
IRCle explores are larger number of generalized cost parameters 4 and runs more instances of the improvement algorithm
H;.

Table 1 presents the solution results for R1 problems Py« = 5% and Wh.x = 10%. The penalty coefficients are set equal to 1,
i.e. a unit of time of time window violation is equal to a unit of distance traveled. Table 1 presents the results in order of
hierarchical value: number of routes, percentage of customers without time window violations, and distance traveled.
The result is that the IRCle outperforms other heuristics and has improved four of the existing benchmark solutions. The
asterisk “+” is used to indicate that a solution has been improved.

Table 2 presents the solution results for RC1 problems with Pp,.x = 10% and Wp.x = 10%. Here we see that the IRCle has
improved two of the existing benchmark solutions. It is clear that there is a tradeoff between the number of vehicles and
time window violations. Consistently, for all methods, the number of routes is negatively correlated with time window
violations.

Tables 3 and 4 present the solution results for R1 and RC1 problems with P,.x = 10% and Wy,,.x = 10% respectively. In these
benchmark problems the IRCle has improved three solutions and presents the best average performance for R1 problems.
Consistently, the number of routes is negatively correlated with the number of time window violations. Previous methods
are outperformed in a total of 9 problems. In addition, the IRCI outperforms, on average, previous results in two of the four
sets of problems.

The range of computational times for each problem is detailed in Table 5. There is a clear tradeoff between computational
times and solution quality as shown by the results provided by the AR and TS methods of Chiang and Russell (2004) and by
the IRCI results with short and extended exploration and improvement phases. However, comparisons regarding computa-
tion times should be performed with caution because in general, computation times are difficult to compare due to the dif-
ferences in processing power and hardware. The interested reader is referred to Dongarra’s work (2007) which includes the
results of a set of standard programs that measure and compare processing power of different machines. Unfortunately,
comparisons are usually not straightforward because not all processors are included in Dongarra’s work. In addition, it is dif-
ficult to account for potential differences in codes, compilers, and implementation computational efficiency.

The second set of VRPSTW benchmarks was proposed by Fu et al. (2008) assuming that the late delivery time window can
be violated with a penalty coefficient for late time windows that is equal to 100, i.e. a unit of time of time window violation is
equal to 100 units of distance traveled. The soft time window for late deliveries can be extended up to the depot closing time.
The results for the 39 instances of R1, R2, RC1, and RC2 problems are presented in Table 6; the results are in order of hier-
archical value: number of routes, percentage of customers without time window violations, and distance traveled. Results for
problems type C1 and C2 are omitted because in these instances the number of routes is bounded by capacity constraints.
Hence, even relaxing both early and late time windows does not reduce the number of routes.

Table 1

VRPSTW results for R1 problems, W = 10%, P = 5%.
Winax 10%
Pmax 5%
Method (1) BAL (2) TS (3) AR (4) UTS (5) IRCIs (6) IRCIe
R101
# Veh. 17 16 14 14 15 14
% HTW 72 65 24 45 71 68 *
Distance 1885 1491 1370 1438 1703 1633
R102
# Veh. 15 13 12 12 13 12
% HTW 83 1322 47 61 84 63 *
Distance 1636 69 1265 1339 1629 1404
R103
# Veh. 13 11 11 11 11 11
% HTW 86 77 59 73 84 93 *
Distance 1452 1184 1066 1168 1357 1374
R109
# Veh. 13 12 11 11 11 11
% HTW 95 84 60 75 85 93 *
Distance 1445 1154 1084 1168 1336 1393
Aver.
# Veh. 14.5 13.0 12.0 12.0 12.5 12.0
% HTW 84 74 48 64 81 79 *

Distance 1605 1288 1196 1278 1506 1451
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Table 2
Results for RC1 problems, W = 10%, P = 5%.
Whax 10%
[Prer= 5%
Method (1) BAL (2) TS (3) AR (4) UTS (5) IRCIs (6) IRCle
RC101
# Veh. 14 14 13 13 14 13
% HTW 56 71 39 64 94 93 *
Distance 1839 1521 1424 1529 1776 1778
RC102
# Veh. 13 13 11 12 13 12
% HTW 88 76 58 81 96 98 *
Distance 1850 1384 1375 1413 1653 1635
RC103
# Veh. 12 11 10 11 11 10
% HTW 82 92 69 86 98 83
Distance 1469 1243 1183 1254 1456 1256
RC106
# Veh. 12 12 11 11 12 11
% HTW 71 81 61 81 96 80
Distance 1496 1338 1223 1336 1507 1522
Aver.
# Veh. 12.8 12.5 113 11.8 125 115
% HTW 74 80 57 78 96 89
Distance 1664 1372 1301 1383 1598 1548
Table 3
VRPSTW results for R1 problems, W= 10%, P = 10%.
Winax 10%
Prax 5%
Method (1) BAL (2) TS (3) AR (4) UTS (5) IRCIs (6) IRCle
R101
# Veh. 15 14 12 12 13 12
% HTW 62 49 8 31 43 25
Distance 1832 1388 1212 1376 1493 1314
R102
# Veh. 14 13 10 11 12 10
% HTW 81 59 33 51 63 25
Distance 1569 1266 1173 1287 1463 1238
R103
# Veh. 13 11 10 10 11 10
% HTW 83 65 58 76 76 66
Distance 1657 1063 1013 1185 1274 1138
R109
# Veh. 12 11 10 11 11 10
% HTW 90 72 47 82 83 53 *
Distance 1431 1102 1005 1183 1280 1116
AVER.
# Veh. 13.5 123 10.5 11.0 11.8 10.5
% HTW 79 61 37 60 66 42 *
Distance 1622 1205 1101 1258 1378 1201

The IRCle improves the results of 21 instances by reducing the number of routes. Yet again, the number of routes is neg-
atively correlated with the number of time window violations. The IRCI solutions utilize fewer vehicles but also violate more
time windows. The asterisk “x” is used to indicate that the number of routes has been reduced. The average computation
times per problem class are presented in Table 7.

The focus of this research is on STW problems. Hard time window problems have been extensively studied and the lit-
erature review briefly mentioned some of the most successful approaches. However, to provide an indication of the flexibil-
ity of the IRCIs, Table 8 presents the performance of the IRCI against other construction heuristics for the VRPHTW proposed
by Solomon (1987), Potvin and Rousseau (1993), and loannou et al. (2001). Table 9 shows a summary of the results when the

IRCI algorithm is compared against two metaheuristics presented in the literature review that were explicitly designed to
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Table 4
Results for RC1 problems, W =10%, P = 10%.
Winax 10%
Prmax 5%
Method (1) BAL (2) TS (3) AR (4) UTS (5) IRCIs (6) IRCle
RC101 .
# Veh. 14 15 11 12 14 11
% HTW 61 62 27 54 73 43
Distance 1795 1569 1275 1457 1839 1322
RC102
# Veh. 13 12 11 11 13 11
% HTW 83 68 56 74 81 63
Distance 1719 1307 1222 1367 1632 1288
RC103 .
# Veh. 12 10 10 11 11 10
% HTW 92 85 65 90 92 79
Distance 1530 1228 1119 1275 1400 1194
RC106
# Veh. 13 12 10 11 12 11
% HTW 97 77 49 81 92 66
Distance 1620 1262 1160 1337 1487 1210
Aver.
# Veh. 13.0 12.3 10.5 11.3 12.5 108
% HTW 83 73 49 75 85 63
Distance 1666 1342 1194 1359 1590 1253
Table 5
Computation time for each STW problem.
Method CPU Running time for each problem
(1) BAL 25 MHz 80386 17-73 s
(2) TS 2.25 GHz Athlon 52-82s
(3) AR 2.25 GHz Athlon 448-692 s
(4) UTS 600 MHz Pentium-II 193-1900 s
(5) IRCIs Intel Pentium-M 1.6 MHz 4.5-49s
(6) IRCIe Intel Pentium-M 1.6 MHz 537-653 s

solve both soft and hard time windows: the tabu search heuristics of Taillard et al. (1997) and the composite metaheuristic of
Ibaraki et al. (2005). The reported time for the IRCIs corresponds to the total time needed to solve both types of problems
(soft and hard) for all 56 Solomon instances. The result of the STW problem is used as a lower bound for the HTW problem.
The other references solve only the VRPHTW type because this is the standard way of testing. Hence, results presented in
Tables 8 and 9 are used to highlight that the IRCI can be used as a tool to quickly evaluate tradeoffs between HTW and
STW solutions and to identify “difficult” customers that increase the number of vehicles needed.

5. Discussion

The relative simplicity of the IRCI allows for a straightforward algorithmic analysis. The auxiliary heuristic H; is called by
the construction algorithm no more than nW|A| times; where n is the number of customers. Hence, the asymptotic number
of operations of the construction algorithm is of order (nW|A|O(H,(n))) where O(H(n)) denotes the computational complex-
ity of the auxiliary algorithm to route n customers.

The improvement procedure calls the construction procedure a finite number of times. The number of calls is bounded by
the number of routes [R|. Further, the called computational time of the construction algorithm is (mW|A|O(H,(m))) where
m < n because only a subset of routes is iteratively improved.

It is clear that the complexity and running time of the auxiliary heuristic H; will have a substantial impact on the overall
running time. Hence, a generalized nearest neighbor heuristics of (GNNH) is used due to its reduced number of operations
and computation time. In particular, if the GNNH has O(n?) and W < n, then the worst case complexity for the IRCI algorithm is
of order O(n?).

To test the average complexity, instances with different numbers of customers were run. The instances were based on the
four R1 problems proposed by Balakrishnan. Firstly, the first 25 and 50 customers of each of problem are taken to create
instances with n =25 and n = 50, respectively. Secondly, in order to create an instance with n =200 customer, a “clone” is
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Table 6
VRPSTW results for type 1 problems.
Problem Fu et al. (UTS) IRCle
Routes HTW (%) Distance Routes HTW (%) Distance
R101 14 75 1535.2 12 44 1128.7 *
R102 13 89 1416.8 11 54 1058.7 *
R103 11 96 1267.3 10 66 1027.4 *
R104 9 99 983.5 9 82 947.3
R105 13 98 1441.2 11 58 1073.5 *
R106 11 97 1355.3 10 67 1047.4 *
R107 10 100 1147.6 10 76 987.6
R108 9 100 978.7 9 86 947.2
R109 11 100 1264.2 10 72 1001.4 *
R110 11 100 1084.0 9 71 10134 *
R111 10 100 1138.5 10 74 983.3
R112 10 100 963.2 9 83 940.9 *
R201 3 89 1500.4 3 44 984.0
R202 3 100 1205.8 3 60 943.5
R203 3 100 950.4 2 70 901.8 *
R204 2 100 854.3 2 81 836.3
R205 3 100 1001.8 3 64 911.9
R206 3 100 917.9 2 75 956.9 *
R207 2 100 903.0 2 82 876.6
R208 2 100 738.3 2 89 8334
R209 3 100 909.9 2 74 950.5 *
R210 3 100 948.2 2 71 963.8 *
R211 2 100 953.2 2 86 906.8
RC101 13 92 1654.3 11 56 1255.3 *
RC102 12 100 1593.7 10 68 1230.1 *
RC103 11 100 1321.7 10 75 1154.6 *
RC104 10 100 1175.2 10 88 1083.9
RC105 12 92 1654.1 11 62 1219.7 *
RC106 11 99 1422.7 10 73 1150.3 *
RC107 11 100 1237.6 10 72 1123.0 *
RC108 10 100 1184.6 10 90 1071.6
RC201 4 100 1409.9 3 52 1147.4 *
RC202 3 100 1435.6 3 65 1073.5
RC203 3 100 1062.4 3 71 906.3
RC204 3 100 800.0 2 86 850.7 *
RC205 3 93 1656.8 3 60 1158.4
RC206 3 100 1186.8 3 60 978.4
RC207 3 100 1127.8 3 67 986.4
RC208 3 100 846.1 2 79 885.5 *
Table 7
Running times for type 1 problems.
Average CPU time in seconds
uTs IRCle
R1 786.3 7241
R2 528.3 402.3
RC1 697.3 715.6
RC2 548.7 478.1

UTS: 600 MHz Pentium-II; IRCle: Pentium-M 1.6 MHz.

created for each customer in the original Solomon problem. The clone is created with new coordinates while still keeping the
characteristics of the problem as random. The summary results for the eight problems with W =10 and P = 10 are shown in

Table 10.

The results are expressed as the ratio between each average running time and the running time for n = 25 for the IRCle. To
facilitate comparisons, the corresponding increases in running time ratios for O(n?) and O(n?) are also presented. The results
indicate that the average running time is increasing by a factor of 0(n?) as expected from the complexity analysis and the last
column of Table 10.

The proposed IRCI approach can accommodate cost functions that cover most practical applications. The cost functions
must be positive functions of fleet size, distance, time, or penalties. Cost functions can be asymmetrical, e.g. p,(t) # p;(t)
where t accounts for the early or late time. Additionally, cost functions are not required to be linear or identical. Similarly,
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Table 8

VRPHTW results for construction algorithms vs. IRCIL.
Method R1 R2 C1 c2 RC1 RC2
Average number of vehicles by problem class
(1) Solomon (1987) 13.58 3.27 10.00 3.13 13.50 3.88
(2) Potvin and Rousseau (1993) 13.33 3.09 10.67 3.38 13.38 3.63
(3) loannou et al. (2003) 12.67 3.09 10.00 3.13 12.50 3.50
(4) Cordone and Calvo (2001) 12.50 2.91 10.00 3.00 12.38 3.38
(5) IRCIs 12.50 3.09 10.00 3.00 12.00 3.38
Average distance
(1) Solomon (1987) 1437 1402 952 693 1597 1682
(2) Potvin and Rousseau (1993) 1509 1387 1344 798 1724 1651
(3) Ioannou et al. (2003) 1370 1310 865 662 1512 1483
(4) Cordone and Calvo (2001)? 1242 995 834 592 1409 1140
(5) IRCIs 1262 1171 872 656 1420 1342

Computation time for all 56 problems: (1) DEC 10, 1 run, 0.6 min; (2) IBM PC, 1 run, 19.6 min; (3) Intel Pentium 133 MHz, 1 run, 4.0 min; (4) Pentium
166 MHz, 1 run, 15.7 min; (5) Intel Pentium-M 1.6 MHz, 10.9 min.

2 The work of Cordone and Calvo (2001) is an iterative local search heuristic not a construction heuristic. However, it is included in this table because it
has a common element with IRCI: it is based on the iterative application of simple heuristics.

Table 9

VRPHTW results for selected metaheuristic algorithms vs. IRCI.
Method R1 R2 C1 c2 RC1 RC2
Average number of vehicles by problem class
(1) Taillard et al. (1997) 12.64 3.00 10.00 3.00 12.08 3.38
(2) Ibaraki et al. (2005) 11.92 273 10.00 3.00 11.50 3.25
(3) IRCIs 12.50 3.09 10.00 3.00 12.00 3.38
Average distance by problem class
(1) Taillard et al. (1997) 12204 10134 828.5 590.9 13813 1198.6
(2) Ibaraki et al. (2005) 12174 959.1 828.4 589.9 1391.0 1122.8
(3) IRCIs 1261.6 1170.8 871.8 655.6 1419.8 13424

Computation time for all 56 problems: (1) Sun Sparc 10, 261 min; (2) Pentium III 1 GHz, 250 min; (3) Intel Pentium-M 1.6 MHz 10.9 min.

Table 10
VRPSTW average run time ratios.
(n (2) O(n?) (3) 0(n?) (4) Run time ratio IRCle? (5)=(4)/(3) = 100 IRCle % O(n>)
25 1 1 1.0 100
50 4 8 2.2 28
100 16 64 12.2 19
200 64 512 48.8 10

2 The ratio of running times is taking the run time for n =25 as a base.

symmetry is not required and d; # dj; or t; # t; does not affect the complexity of the algorithm. That is, the corresponding
penalty function can be non-convex and discontinuous as long as it is piecewise linear. In addition, customers with two or
more time windows can be easily included in the auxiliary route construction algorithm. The number of routes m is not spec-
ified initially and it is an output of the solution algorithm.

Although solution quality and computation times are two key factors to evaluate vehicle routing heuristics, for practical
implementations it is also crucial that algorithms are relatively simple and flexible (Cordeau et al., 2002). According to Cor-
deau et al. (2002) the majority of the commercial software and in-house routing programs are still based on simple and
unsophisticated methodologies dating back to the 1960s. Some of the reasons that explain this preference are: (a) dispatch-
ers preference for algorithms/programs that are highly interactive and allow for manual improvements and the manipula-
tion of constraints and customer priorities, (b) better results on benchmark problems are usually obtained at the expense of
too many parameters or complicated coding that lacks flexibility to accommodate real-life constraints, (c) dispatcher may
find algorithms with too many parameters difficult to calibrate or even understand, and (d) solution approaches that are
markedly tailored to perform well on the benchmark problems may lack generality and robustness in real-life problems.
As indicated by Golden et al. (1998), algorithms should also be compared not only by the number of parameters but also
by how intuitive and reasonable these parameters are from a user’s perspective.

The relative simplicity and generality of the IRCI are important factors in real-world applications. The IRCI algorithms
have also been adapted to solve time-dependent vehicle routing problems (TDVRP) as detailed in (Figliozzi, 2009).
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6. Conclusions

The main contribution of this paper is the introduction of an efficient, simple, and flexible algorithm for the vehicle rout-
ing problem with soft time windows. Thirty soft time window benchmark problems have been improved. The proposed IRCI
algorithm can provide reasonable solutions with small computation times or high quality solutions with extended compu-
tation times. The developed IRCI algorithm is based on a modular and hierarchical algorithmic approach. Its average running
time is of order O(n?) and the worst case running time is of order O(n?). The flexibility of the IRCI algorithm also allows for a
sequential solution of routing problems with soft and hard time windows.
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